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Abstract: Power system stabilizers (PSSs) are traditionally used to provide damping torque for the synchronous 

generators to suppress the oscillations by generating supplementary control signals for the generator excitation 

system. Numerous techniques have previously been proposed to design PSSs but many of them are synthesized 

based on a linearized model. The dynamic characteristics of the proposed PSS are studied in a typical 

synchronous machine connected to infinite-bus of power system through transmission line. This paper deals 

with the applying of the Linear Quadratic Gaussian (LQG) technique to the design of the robust controller for 

two models of power system. The first model represents only the electrical control part of power system by 

means synchronous generator connected to infinite bus, while the second model, adding a turbine and  governor 

to the model 1. Combined the Kalman filter, which is an optimal observer with the optimal LQR regulator to 

construct the optimal LQG controller are evaluated. Electromechanical oscillations of small magnitude and low 

frequency exist in the power system operation and often persist for long periods of time. Simulation results 

show the proposed PSS is robust for such nonlinear dynamic system and achieves better performance than the 

conventional PSS in damping oscillations. 
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1. Introduction  
 The power flow at and around the nominal power 
frequency, all electrical and electromechanical 
power systems involve a wide range of resonant 
oscillatory modes. Due to the proximity of 
generation to the load, small variations in the system 
load can excite the voltage oscillation due to 
reactive power mismatch which must be damped to 
maintain secure and stable system operation. 
Conventional excitation controllers coupled with 
power system stabilizers (PSSs) for centralized 
generation are usually designed based on linearized 
models. As the load over the entire transmission 
gets averaged out, linearized generator models are 
appropriate for designing the oscillation damping 
controller. But in power distribution systems 
(PDSs), the load change in proportion to the 
generation is large and linearized generator models 
are constantly changing. In such situations, robust 
control is essential [1]. Damping inter-area 
oscillations is one of the major concerns for the 
electric power system operators. With ever 
increasing power exchange between utilities over 
the existing transmission network, the problem has 
become even more challenging. Secure operation of 
power systems, thus, requires the application of 
robust controllers to damp these inter-area 
oscillations. Power system stabilizers (PSSs) are the 
most commonly used devices for this purpose. The 
task of control design is challenging, owing to the 

complex nature of the interactions in the inter-area 
modes of the system. Methods received increased 
attention in power systems; however, issues with 
weighting function selection make the whole design 
procedure difficult. Linear quadratic Gaussian 
(LQG) control approaches using different FACTS 
devices have been presented for closed-loop 
identification in, and power system stabilizer (PSS) 
for small systems in [2]. 
 The basic objective of the control system is the 
ability to measure the output of the system, and to 
take corrective action if its value deviates from 
some desired value. The voltage regulator is the 
intelligence of the system and controls the output of 
the exciter so that the generated voltage and reactive 
power change in the desired way. As the number of 
power plants with automatic voltage regulators 
grew, it became apparent that the high performance 
of these voltage regulators had a destabilizing effect 
on the power system. Power oscillations of small 
magnitude and low frequency often persisted for 
long periods of time. In some cases, this presented a 
limitation on the amount of power able to be 
transmitted within the system. Power system 
stabilizers were developed to aid in damping of 
these power oscillations by modulating the 
excitation supplied to the synchronous machine [3].
 The LQG control design method is considered to 
be a cornerstone of the modern optimal control 
theory and is based on the minimization of a cost 
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function that penalizes states’ deviations and 
actuators’ actions during transient periods. The main 
advantage of LQG control is its flexibility and 
usability when specifying the underlying trade-off 
between state regulation and control action [4]. 
Linear Quadric Gauss optimal control (LQG) has 
been proved to be a significant method which could 
effectively solve the random noise problem and 
achieve optimum performance [5] 
 In this paper, a proposed robust approach based 
on LQG control theory is presented to overcome the 
above-mentioned problems of the linear controls by 
explicitly using a nonlinear model of the power 
system for control synthesis. Finally, the power 
system stabilizers (PSS) are added to excitation 
systems to enhance the damping during low 
frequency oscillations. The main aim of research 
dealing with power system stabilizer (PSS) design 
for synchronous generator excitation systems  to 
assures damping of the power system transient 
processes under various operating conditions [6] [7]. 
 

2. Power System Modeling  
2.1. Model 1: Excitation System  

The power system under study in this work consists 
of synchronous machine connected to an infinite bus 
through a transmission line. The 4th order model 
has presented of a synchronous machine connected 
to an infinite bus as shown in  
Figure 1. 

 

Synchronous 

Generator Infinite Bus

Line

ω Vgen L R V

 

Figure 1: Single line diagram of the power system 

The differential equations describing this model 

are given by [8]: 
.

0      Eq. 1 

 
.

1 2

1
qK D K E

M
            Eq. 2 
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  
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 Eq. 4 

Where:  

∆δ :Deviation of the rotor angle 

∆E/q    :Transient Voltage proportional to q-

axis flux linkage 

M :Constant proportional to inertia 

T do :Open circuit transient time constant 

KA :Gain constant 

∆ω :Deviation of the rotor speed 

∆Efd   :Generator field voltage 

D :Damping coefficient 

TA :Exciter time constant 

  

 
Figure  2 , shows the block diagram of the model 
based on the mathematical model given by Eq.1 to 
Eq.4 

 
Figure  2 : Block diagram of the model power system 

[8], [9]. 

 

The differential Eq.1 to Eq4 can be written in 

matrix form as follows: 
.
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The input vector,  

 C 1 1 0 0 : The output vector 

 D  0 ,  

  

U KX    

 

The control signal  

 

2.2. Model II : Interconnected  power system 

 A synchronous machine connected to infinite bus 
through transmission line is obtained in an 
interconnected power system between automatic 
voltage regulation and load frequency control as 
shown in a block diagram of Figure 3 the state space 
formulation can be obtained as follows: 

 
Figure 3: The block diagram of interconnected power system [10]. 

 

2.2.1. Steady-state Representation  

.
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It can be written in a matrix form as follows: 

dPUBXAX  
.

 Eq. 12 

 

Where; 

 tfdgmq EPTEX  '  
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3. LQR Control Design 
 Optimal control allows us to directly formulate 
the performance objectives of control system and 
produces the best possible control system for a 
given set of performance objectives. A control 
system which minimizes the cost associated with 
generating control inputs is called an optimal 
control system.  
 The control energy can be expressed as U*R*U, 
where R is a positive definite square, symmetric 
matrix called the control cost matrix. Such an 
expression for control energy is called a quadratic 
form, because the scalar function, U*R*U, contains 
quadratic functions of the elements of U. Similarly, 
the transient energy can also be expressed in a 
quadratic form as XT*Q*X, where Q is a positive 
semi-definite square, symmetric matrix called the 
state weighting matrix [7]. 
 The objective function can then be written as 

follows: 

   
0

J u T TX QX U RU dt



   Eq. 15 

 The optimal control problem consists of solving 

for the feedback gain matrix, K, such that the scalar 

objective function, J(u), is minimized if all state 

variables can be measured. 
 
Where, S is the positive definite matrix solution of 
the following control algebraic Riccati equation: 

T 1 TSA A S Q S*B*R *B *S 0     Eq. 16 

 One of the important properties of LQ-regulators 
is that provided certain conditions are met, they 

guarantee nominally stable closed-loop system. The 
conditions for achieving a stable LQ system are as 
follows: 

R  0   ,  Q  0  .,  

 (A,B) controllable (stabilizable) . 

[ , , ] ( , , , , )K S E lqr A B Q R N   Eq. 17 

 Choosing the weight matrices Q and R usually 
involves some kind of trial and error, and they are 
usually chosen as diagonal matrices and N equal to 
zero. 

 

4. Kalman  Filter Design 
 The Kalman filter approach provides us with a 
procedure for designing observers for multivariable 
plants. Such an observer is guaranteed to be optimal 
in the presence of noise signal. Since noise is rarely 
encountered, the power spectral densities used for 
designing the Kalman filter can be treated as tuning 
parameters to arrive at an observer for multivariable 
plants that has desirable properties, such as 
performance and robustness. Consider a plant with 
the following linear time-invarying state-space 
representation: 

.

X AX BU w     Eq. 18 

Y CX DU v    Eq. 19 

Where; 

w is the process noise vector 

v  is the measurement noise vector 

 

 For designing a control system,  Therefore, an 
observer is required for estimating the state-vector, 
based upon a measurement of the output ,given by 
Eq.,s 18,19 and known input, U. Kalman filter is an 
optimal observer, which minimizes a statistical 
measure of the estimation error, eo=X-Xo , Where  
Xo  is the estimated state-vector. The state-equation 
of the Kalman filter can be written as follows: 

0 0 0* * *( * * )X A X B U L Y C X D U


      Eq. 20 

Where; 
 L  is the gain matrix of the Kalman filter. 

T 1L S*C *Z    Eq. 21 

 Since the Kalman filter is an optimal observer, 
the problem of Kalman filter is solved quite 
similarly to the optimal control problem. For the 
time-invariant problem, the following algebraic 
Reccati equation results for the optimal covariance 
matrix, [6] [7]: 
 

T T 1 TA*S S*A –S*C *V *C*S  B*W*B 0     Eq. 22 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Ali M. Yousef, Mohamed Zahran, Ghareeb Moustafa

E-ISSN: 2224-2856 281 Volume 10, 2015



Where; 

 A, B, C, are the plant's state coefficient 

matrices,  

 W is the process noise matrix,  

 V is the measurement noise matrix, and   

 S is the optimal covariance matrix of the  

  estimation error.  

 

 The algebraic Riccati equation can be solved 
using the specialized Kalman filter MATLAB 
command lqe. The Kalman filter optimal gain, L, is 
given by: 
 

   L,S,E   lqe A,B,C,W,V  Eq. 23 

Where   

 L  is the returned Kalman filter optimal gain,  

 S  is the returned solution to the algebraic  

  Reccati equation, and  

 E  is a vector containing the eigenvalues of the 

  Kalman filter (i.e. the eigenvalues of A-

LC). 

 

5. LQG Controller Design 
 If a controller is designed using the LQR, and the 
observer is designed using Kalman filter, the 
resulting system is referred to as Linear Quadratic 
Gaussian (LQG) Control or LQG-compensator. In 
short, the optimal compensator design process is the 
following [12]: 

1. Design an optimal regulator for a linear plant 

using full-state feedback. The regulator is 

designed to generate a control input, u(t), 

based upon the measured state-vector, X. 

2. Design a Kalman filter for the plant assuming 

a known control input, u(t), a measured 

output, y(t), and white noises, w & v .  

3. The Kalman filter is designed to provide an 

optimal estimate of the state vector, X. 

4. Combine the separately designed optimal 

regulator and Kalman filter into an optimal 

compensator (LQG), which generates the 

input vector, u(t), based upon the estimated 

state-vector, Xo ,rather than the actual state-

vector, X, and the measured output, y(t). 

 

 The measurement noise spectral density matrix, 
the state-space realization of the optimal 
compensator is given by the following state and 
output equations [7]: 

0 oX = (A B*K L*C L*D*K)*X L*Y       Eq. 24 

oU K*X   Eq. 25  

Where  
 K & L  are the optimal regulator and Kalman 

  filter gain matrices,  respectively, and   

 Xo  is the estimated state vector.  

 

 Figure 3 shows the block diagram of the optimal 
LQG-compensator [7]. Using MATLAB's Control 
System Toolbox, a state-space model of the 
regulating closed-loop system, sysc; can be 
constructed as follows: 

 sysp  ss A,B,C,D  Eq. 26 

  

 A B*K L*C
sysc=ss

L*D*K ,L ,K , zeros size D'

  
 
  

  Eq. 27 

syscl  feedback(sysp,sysc)   Eq. 28 

Where 
 sysp is the state-space model of the plant, 

 sysc  is the state-space model of the LQG  

  compensator, and  

 syscl  is the state-space model of the closed 

  loop system. 

 
Figure 4: Block diagram of the optimal LQG-

compensator. 

 

6. Simulation Results 
6.1. Model I: Simulation Results 

 The dynamic stability of power system subjected 
to load disturbances by using the MATLAB 
program is proposed by choosing the machine 
parameters’ at nominal operating point [Active 
power P=1 pu, Reactive power Q=.25 pu].The 
LQG-controller will applied on the two models of 
the power system under study. The data sheet of the 
synchronous machine is given by [8]  : 

d q dd

do

o A A

X 1.6,  X 1.55,  X 0.32,  

Xe 0.4,E 1,  T 6,M 10,  

377,  D 0,K 25,  T 0.06

  

   

   

 

 The state coefficient matrices A, B of the 4th 
order plant with the given data sheet of synchronous 
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machine discussed in [5]. are calculated at the 
nominal operating point (Active power P=1 pu, 
Reactive power Q=0.25 pu ) as : 

0 377 0 0

.1317 0 .1104 0

.2356 0 .463 .1667

15.4703 0 194.8383 16.6667

A

 
 
  

  
 

  

,

0

0

0

416.6667

B

 
 
 
 
 
 

,   1 1 0 0C   

The optimal regulator feedback gain matrix, K, 

is calculated with the Q, R matrices as follows: 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 .001

Q

 
 
 
 
 
 

,    50R   

From Eq.17, we the value of lqr feedback gain as; 

 K _ lqr 0.1217   0.1090   0.1292    0.0015   

1.8 0 1.5 0

0 5329.5 34.4 0

1.5 34.4 1.9 0

0 0 0 0

S

 
 

 
 
 
 

 

 The Kalman filter optimal gain matrix, L, is 
calculated with the W, V matrices at the nominal 
operating point (P=1 pu, Q=.25 pu) as follows: 

         ,              

From Eq.23, we the value of Kalman filter gain as; 

L =1.0e+
006

 * 

0.0000

0.0001

0.0267

2.6089

 
 
 
 
 
 

 

, illustrates the digital simulation results of 
eigenvalues calculations for power system at 
different operation points with and without 
controllers of model I.  
 Figure 5 shows the rotor speed deviation 
response due to 0.1 pu load disturbance with and 
without controllers at (p=1 pu, Q=0.25 pu). While 
Figure 7 depict the rotor speed deviation response 
due to 0.1 pu load disturbance with and without 
controllers at (p=1 pu, Q=0.7 pu) . 
 Figure 6 displays the rotor speed deviation 
response due to 0.1 pu load disturbance with and 
without controllers at (p=0.5 pu, Q=-0.15 pu). 
 Finally the rotor speed deviation response due to 
0.1 pu load disturbance with and without controllers 
at lead power factor (p=1 pu,Q=-0.25 pu) are shown 
in Figure 8.  
 The settling time calculations of model-I power 
system at different operation points, with and 
without controllers is shown in Table 2. 

Table 1: Eigenvalues analysis of power system with and without controllers 
Operating 

Point (P,Q) 

Without    

Control 

With LQR  

Control 

With LQG  

Control 

Remark 

 

(1,.25) 

Normal Load 

-14.2951           

  -0.0363 + 7.0074i 

  -0.0363 - 7.0074i 

  -2.7619           

-14.4038           

  -0.2429 + 7.0208i 

  -0.2429 - 7.0208i 

  -2.8707     

-23.4250 +39.4557i 

 -23.4250 -39.4557i 

 -46.0711           

 -14.5977           

  -0.5641 + 7.0185i 

  -0.5641 - 7.0185i 

  -0.0185           

  -3.0493 

Rotor speed deviation, 

oscillations is shown in Figure 5 

 

(1, 0.7) 

Heavy Load 

  

-14.0142           

  -0.0194 + 7.6654i 

  -0.0194 - 7.6654i 

  -3.0767          

-14.0764           

  -0.1555 + 7.6781i 

  -0.1555 - 7.6781i 

  -3.3672           

-21.7113 +36.6323i 

 -21.7113 -36.6323i 

 -42.6908           

  -0.3654 + 7.6767i 

  -0.3654 - 7.6767i 

  -0.0284           

  -3.8425           

 -14.1911 

Rotor speed deviation, 

oscillations is shown in Figure 7 

 

(0.5, 0.15) 

Light Load 

 -14.1781           

  -0.1486 + 6.0497i 

  -0.1486 - 6.0497i 

  -2.6542      

-14.2491           

  -0.3606 + 6.0356i 

  -0.3606 - 6.0356i 

  -2.7844           

-21.4194 +35.7836i 

 -21.4194 -35.7836i 

 -42.0869           

  -0.6897 + 5.9837i 

  -0.6897 - 5.9837i 

  -0.0174           

  -3.0088           

 -14.3790    

Rotor speed deviation, 

oscillations is shown in Figure 6 
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(1, -0.25) 

Lead PF 

-14.9002           

   0.1021 + 6.3167i 

   0.1021 - 6.3167i 

  -2.4336  

Un-stable     

-15.0445           

  -0.2068 + 6.3348i 

  -0.2068 - 6.3348i 

  -2.2966      

--25.0515 +42.0976i 

 -25.0515 -42.0976i 

 -49.3002           

 -15.2945           

  -0.6953 + 6.3571i 

  -0.6953 - 6.3571i 

  -0.0131           

  -2.0707     

Rotor speed deviation, 

oscillations is shown in Figure 8 

 

Table 2, Settling time for single machine model with and without controllers 

 Without Control LQR- Control LQG- Control 

P=1, Q=0.25 pu. Normal load > 10 Sec. > 10 Sec. 6.5 Sec. 

P=1, Q=0.7 pu., Heavy load > 10 Sec. > 10 Sec. 9 Sec. 

P=0.5, Q=0.15 pu. Light load > 10 Sec. 9 Sec. 5.5 Sec. 

P=1, Q= -0.25 pu. Lead P.F. load 


 > 10 Sec 4 Sec. 

 

 
Figure 5 : Rotor speed dev.  response due to 0.1 pu load 

distorbance with and without controllers, at (p=1 pu , 

Q=.25 pu ). 

 

 
Figure 6: Rotor speed dev. response due to 0.1 pu  load 

distorbance  with and without controllers at lead power 

factor load (p=1.1 pu , Q=-.3 pu ). 

 
Figure 7: Rotor speed dev. response due to 0.1 pu  load 

distorbance with and without controllers at (p=1.1 pu , 

Q=.75 pu ). 

 
Figure 8 : Rotor  speed dev. response due to 0.1 pu  load 

distorbance with and without controllers at lead power 

factor load (p=1.1 pu , Q=-.82 pu ). 

 

6.2. Model II: Simulation Results 

The following mathematical linearized state 

space model represents a power system which 

consists of synchronous machine connected to 

infinite bus through transmission line [9], [10]; The 

block diagram is shown in Figure 3. Choosing the 

machine parameters and nominal operating point as; 
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0 0377; 10; 6;

0; 0.06;

25( 1; 0.25);

0.08; 1.82; 0
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 From LQR control (Eq. 17), the feedback gain 
and solution of Reccati equation are: 

    0.0265   -0.3333   -0.0390    0.0507   -0.0144    0.0037

    0.0212   -0.2213    0.0740    0.0003   -0.0229    0.1461
LQRK

 
  
 

 
 From LQG and Kalman filter control (Eqn. 23), 
the observer gain matrix L and solution of reccati 
equation P are: 

    0.0000    0.0000
    0.0000    0.0000
   -0.0036   -0.0007

1.0e+9 *
   -5.0807   -0.6302
    0.0000    0.0000
   -0.0001   -0.0000

L

 
 
 

  
 
 
   

    0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000

    0.0000    0.0000   -0.0000   -0.0000    0.0000   -0.0000

   -0.0000   -0.0000    0.0000    0.0004    0.0000   -0.0000
1.0e+11*

   -0.0000
P 

   -0.0000    0.0004    1.1742    0.0000   -0.0001

    0.0000    0.0000    0.0000    0.0000    0.0000   -0.0000

   -0.0000   -0.0000   -0.0000   -0.0001   -0.0000    0.0000

 
 
 
 
 
 
 
 
 

 

 
 Figure 9 shows the rotor angle deviation 
response due to 0.1 load disturbance with and 
without LQG  and LQR controllers at lag power 
factor load (P=1, Q=0.25 pu).  
 Figure 10 depicts the rotor speed deviation 
response due to 0.1 load disturbance with and 
without LQG  and LQR controllers at lag power 
factor load (P=1, Q=0.7 pu).  
 Figure 11 shows the rotor speed deviation 
response due to 0.1 load disturbance with and 
without LQG  and LQR controllers at lead  power 
factor load (P=0.5, Q= 0.15 pu) ,  
 Figure 12 shows the rotor speed deviation 
response due to 0.1 load disturbance with and 
without LQG  and LQR controllers at lead  power 
factor load (P=1, Q= -0.25 pu).  
  
 Moreover, Table 3 shows the Settling time for 
single machine model with and without controllers 
at different operating conditions.  
 Table 4 displays the Eigenvalues calculation with 
and without controllers for single machine power 
system.  
 

 
Table 3, Settling time for single machine model with and without controllers 

Operating points Without Control LQR- Control LQG- Control 

P=1, Q=0.25 pu. Normal load > 10 Sec. > 10 Sec. 6 Sec. 

P=1, Q=0.7 pu. Heavy load > 10 Sec. > 10 Sec. 9.5 Sec. 

P=0.5, Q=0.15 pu. Light load > 10 Sec. > 10 Sec. 8 Sec. 

P=1, Q= -0.25 pu. Lead P.F. load   > 10 Sec 3 Sec. 

 

Table 4: Eignvalues calculation with and without controllers of single machine power system 
Operating 

point (P,Q) 

Without    

control 

With LQR  

control 

With LQG  

control 

remark 

 

(1,.25) 

Normal Load 

-0.0367 + 6.9961i 

  -0.0367 - 6.9961i 

 -14.2953           

 -12.4821           

  -2.7625           

  -3.7201 

-36.9779           

 -14.2321           

  -0.1110 + 7.0260i 

  -0.1110 - 7.0260i 

  -1.1061           

  -3.7466           

1.0e+002 * 

  -3.5443 + 3.1680i 

  -3.5443 - 3.1680i 

  -3.5623           

  -0.9704 + 3.1207i 

  -0.9704 - 3.1207i 

  -0.0017 + 0.0704i 

  -0.0017 - 0.0704i 

  -0.1423           

  -0.1250           

  -0.0019           

  -0.0377           

  -0.0371           

Rotor speed deviation, 

oscillations is shown in Figure 

9 
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(1, 0.7) 

 heavy load 

-0.0204 + 7.6552i 

  -0.0204 - 7.6552i 

 -14.0144           

 -12.4829           

  -3.7181           

  -3.0771           

-36.8864           

 -14.2317           

  -0.0684 + 7.6758i 

  -0.0684 - 7.6758i 

  -1.2742           

  -3.7555           

1.0e+002 * 

  -3.3674 + 3.0526i 

  -3.3674 - 3.0526i 

  -3.5144           

  -0.8119 + 2.9637i 

  -0.8119 - 2.9637i 

  -0.0011 + 0.0768i 

  -0.0011 - 0.0768i 

  -0.1423           

  -0.1250           

  -0.0033           

  -0.0378           

  -0.0371           

Rotor speed deviation, 

oscillations is shown in Figure 

10 

 

(0.5, 0.15) 

Light Load 

  -0.1479 + 6.0363i 

  -0.1479 - 6.0363i 

 -14.1778           

 -12.4819           

  -2.6593           

  -3.7186           

-36.9221           

 -14.2328           

  -0.1549 + 6.0546i 

  -0.1549 - 6.0546i 

  -1.0961           

  -3.7238           

1.0e+002 * 

  -3.3246 + 3.0248i 

  -3.3246 - 3.0248i 

  -3.5016           

  -0.7765 + 2.9261i 

  -0.7765 - 2.9261i 

  -0.0016 + 0.0607i 

  -0.0016 - 0.0607i 

  -0.1423           

  -0.1250           

  -0.0025           

  -0.0375           

  -0.0372           

Rotor speed deviation, 

oscillations is shown in Figure 

11 

 

(1, -0.25) 

Lead PF 

   0.1033 + 6.3047i 

   0.1033 - 6.3047i 

 -14.9008           

 -12.4804           

  -2.4303           

  -3.7285        

Unstable    

-37.2057           

 -14.2319           

  -0.1060 + 6.3558i 

  -0.1060 - 6.3558i 

  -3.7440           

  -0.8909           

1.0e+002 * 

  -3.7002 + 3.2728i 

  -3.7002 - 3.2728i 

  -3.5988           

  -1.1326 + 3.2653i 

  -1.1326 - 3.2653i 

  -0.0027 + 0.0638i 

  -0.0027 - 0.0638i 

  -0.1423           

  -0.1250           

   0.0003           

  -0.0376           

  -0.0371           

Rotor speed deviation, 

oscillations is shown in Figure 

12 

 

 
Figure 9: Rotor angle dev. Response due to 0.1 load 

disturbance with and without LQG  and LQR 
controllers at lag power factor load (P=1, Q=0.25 

pu) 
 

 
Figure 10: Rotor speed dev. Response due to 0.1 

load disturbance with and without LQG  and LQR 

controllers at lag power factor load (P=1, Q=0.7 pu) 
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Figure 11: Rotor speed dev. Response due to 0.1 

load disturbance with and without LQG  and LQR 

controllers at lead  power factor load (P=0.5, 

Q=0.15 pu) 

 

 

 
Figure 12: Rotor speed dev. Response due to 0.1 

load disturbance with and without LQG  and LQR 

controllers at lead  power factor load (P=0.5, 

Q=0.15 pu) 

 

 

7. Discussions 
 The simulation results of Model I show the effect 
of the proposed LQG controller for damping the 
dynamic oscillation on power system in a wide 
range of operating conditions. The power system 
understudy at the operating points (1,-0.25) is un-
stable system in case of without control as shown in 
Figures 8, 12. After the effect of the control based 
on LQR the system became stable. Moreover, after 
the effect of the proposed control based on LQG, 
the system became fast damping at all operating 
points see the eigenvalues in Tables 1,2,3,4. Also, 
Tables 2, 4 shows the settling time in case of 
proposed LQG controller is less than that in case of 
LQR controller at all operating conditions. 

8. Conclusion 
 This paper presented a proposed robust controller 
based on Linear Quadratic Gaussian LQG theory to 
design a power system stabilizer for single-machine 
infinite-bus power systems. The proposed approach 
overcomes the problems of the linear controls by 
explicitly using a nonlinear model of the power 
system for control synthesis.  
 The proposed robust linear quadratic Gaussian 
control LQG-PSS is design and applicator of the 
power system under study. The comparison shows 
that the proposed robust LQG controller is effective 
and robust in suppressing large disturbances, as well 
as enhancing the power system stability. It is also 
suitable for a wide range of operating conditions of 
the power system compared with the conventional 
linear quadratic control LQR-PSS. 
 The LQG optimal control has been developed to 
be included in power system in order to improve the 
dynamic response and gives the optimal 
performance at any loading condition.  The LQG is 
better than LQR controller in terms of small settling 
time and less overshoot and under shoot. The digital 
simulation results show that the proposed PSS based 

upon the LQG can achieve good performance over a 
wide range of operating conditions. 
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